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The Ultraviolet and Visible spectrometer (UVIS) [1
(see Fig. 1) operates in the wavelength range 200-
650 nm and is the ultraviolet and visible channel of
the Nadir and Occultation for MArs Discovery
(NOMAD) instrument(? onboard the ExoMars Trace
Gas Orbiter (TGO). UVIS has performed high
spatial, and temporal resolved, nadir observations

of the Martian surface for over 3 years.

Fig 1: The UVIS spectrometer

We have used the discrete ordinates DISORT
package®! and the  ‘front-end’  routines
DISORT_MULTI®58 to develop a retrieval
procedure to obtain the ozone and aerosol column
abundances in the Martian atmosphere. An
example of our model fit to a UVIS spectrum with
strong ozone absorption is shown in Fig. 2. We fit to
six wavelengths; 225, 230, 300, and 305 nm for the

aerosol component, and 250 and 260 nm for ozone.
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Fig 2: An example of the model fit for a UVIS nadir spectrum with
strong ozone absorption.




Seasonally, the ozone distribution is consistent with low ozone abundances in equatorial regions, and higher ozone
abundances at higher latitudes in the winter season. As the Martian atmosphere cools through northern spring, from the

reduced solar insolation, we observe a steady increase in equatorial ozone with abundances peaking around the

northern summer solstice.
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Mars Year (MY) 34 was a non-typical vyear,
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experiencing a global dust storm (GDS) that started
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Fig 3: The seasonal distribution of ozone, dust, and ice for MY34 and the first half
of MY35

Water ice aerosols are observed at all latitudes prior to the onset of the GDS. As the dust loading increases, and the
atmosphere warms, the ice content decreases. The initial formation of the aphelion cloud belt is observed at the end of

MY34 around Ls ~340°, peaking at Ls ~90° in MY35, before decaying as the atmosphere warms.
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Fig 4: Ozone abundances are enhanced in Hellas basin
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Fig 4: Formation of the aphelion cloud belt in

MY35



